
Explicit Stabilisation
for Modular Rely-Guarantee Reasoning

John Wickerson, Mike Dodds and Matthew Parkinson

University of Cambridge Computer Laboratory

Abstract. We propose a new formalisation of stability for Rely-Guaran-
tee, in which an assertion’s stability is encoded into its syntactic form.
This allows two advances in modular reasoning. Firstly, it enables Rely-
Guarantee, for the first time, to verify concurrent libraries independently
of their clients’ environments. Secondly, in a sequential setting, it allows
a module’s internal interference to be hidden while verifying its clients.
We demonstrate our approach by verifying, using RGSep, the Version 7
Unix memory manager, uncovering a twenty-year-old bug in the process.

1 Introduction

Reasoning about concurrent programs is hard because commands from different
threads are interleaved non-deterministically. With many threads and many com-
mands per thread, naïve reasoning soon succumbs to a combinatorial explosion.
The Rely-Guarantee (RG) method [14] restores tractability through abstraction.
In addition to the pre and postconditions inherited from Hoare logic [12], a com-
mand is specified by two relations between states: a rely R that specifies all the
state transitions (or ‘actions’) the environment can cause, and a guarantee G
that specifies all the actions of the command itself. (The environment is the set
of concurrently-running threads.) The method conservatively assumes that be-
tween consecutive commands in a thread, any number of actions in R may occur.
The truth of an assertion that holds after one command must be preserved by
this ‘interference’, so that it may be safely assumed by the next command. Such
an assertion is deemed stable under R.

Stability is traditionally enforced through side-conditions on proof rules. We
propose (Sect. 3) a new formalisation in which stability is recorded within the
syntactic form of the assertion itself. Just as ‘explicit substitution’ [1] added
substitution to the syntax of λ-calculus terms, our work adds stabilisation to
the syntax of RG assertions. We propose two new constructs: bpcR to denote the
weakest assertion that is both stronger than p and stable under R, and dually,
dpeR to denote the strongest stable assertion that is weaker than p.

The main benefit is in modularity, two forms of which we tease apart and
tackle separately: verifying concurrent libraries independently of clients, and
verifying clients of a (sequential) module independently of its implementation.

Verifying libraries independently of clients. RG is a compositional method: an en-
tire program’s proof depends only upon the proofs of its constituent commands.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 611–630, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2

Yet it is not modular: a command’s proof cannot necessarily be re-used when
the command features in a different program, because proofs are environment-
specific. Thus, RG cannot verify libraries that are invoked in several different
environments. Our solution (Sect. 4) has the library record stability requirements
using b cR and d eR, but leave the specification parametric in R. Each client then
instantiates R appropriately and performs the stabilisation.

Verifying clients independently of module implementations. In Sect. 5, we bring
explicit stabilisation to an RG-style logic that reasons about heap-manipulating
programs: RGSep [20]. Because it divides the heap into both thread-local and
shared regions, RGSep’s notion of stability is more complex than that of ordinary
RG; in particular, while only the shared heap is susceptible to interference,
we shall see that the local heap can still affect stability arguments. Originally
conceived for concurrency, RGSep is apt for verifying sequential modules too.
Such a verification must consider every action by which a client can mutate
the module’s part of the heap. Our extension of explicit stabilisation to RGSep
permits an InfoHiding rule that allows this so-called ‘internal interference’ to
be hidden while verifying clients. We demonstrate (Sect. 6) this approach by
verifying – for the first time – the Version 7 Unix memory manager. In doing so,
we uncover a bug that has lain dormant since 1979.

We begin with a short introduction to the RG proof system, followed by a brief
account of the failure of traditional RG to provide a modular specification for
even one of the most trivial library functions: increment.

2 Background: Rely-Guarantee reasoning

RG specifications are of the form R,G ` {p}C {q}, where R and G are relations
between states. Following [17], G shall be reflexive. This specification expresses
that when C begins execution in a state satisfying the precondition p, in an
environment whose interference is limited to the actions in the rely R, then any
state transitions performed by C are within its guarantee G, and moreover, if
the execution terminates, the final state satisfies the postcondition q.

Figure 1 presents a selection of the RG proof rules, which concern commands
of the following simple parallel language:

C ::= skip | C ;C | C llC | C + C | C+ | c

The + operator chooses one of its operands to execute, while C+ executes C at
least once.1 We consider only partial correctness, so these non-deterministic con-
structs for choice and looping suffice for encoding if and while commands. The
language is parameterised on the set of basic commands c, which are relations
that model atomic state transformations. We shall assume c includes assert
1 Interestingly, a variant of the Loop rule for reasoning about C∗ commands would
require a stability check on p, in case C∗ should behave like skip. Our language uses
C+ so as to sidestep this check.

3

Weaken
R′, G′ ` {p′}C {q′}
p⇒ p′ q′ ⇒ q
R ⊆ R′ G′ ⊆ G
R,G ` {p}C {q}

Par
R ∪G2, G1 ` {p1}C1 {q1} R ∪G1, G2 ` {p2}C2 {q2}

R,G1 ∪G2 ` {p1 ∧ p2}C1 llC2 {q1 ∧ q2}

Basic
` {p} c {q} ↼p ∩ c ⊆ G
p stabR q stabR

R,G ` {p} c {q}

Skip
p stabR

R,G ` {p} skip {p}

Loop
R,G ` {p}C {p}
R,G ` {p}C+ {p}

Fig. 1: Selected RG proof rules (with stability checks)

and assume commands and variable assignment. See [21] for the complete set of
proof rules and the formal semantics of our language.

The Basic rule requires that c meets the sequential specification {p} c {q},
and that any action it performs is within its guarantee. It uses the notation
↼p

def= {(σ, σ′) | σ |= p}. The pre and postconditions of the two ‘ground’ com-
mands, c and skip, are required to be stable. Since the other commands are
built inductively from these, their rules can assume any inherited assertions to
be stable (or else derived from stable assertions by the Weaken rule). Stability
checks are notated as follows:

Definition 1 (Stability). p stabR
def= ∀σ, σ′. σ |= p ∧ R(σ, σ′) =⇒ σ′ |= p.

The Par rule marks the epitome of RG reasoning. When reasoning about
commands composed in parallel, the rely of each command is extended to in-
clude the guarantee of the other. The composed command C1 llC2 guarantees
actions in either of its components’ guarantees, and establishes both components’
postconditions upon completion.

2.1 The problem with verifying libraries

Consider a library function f() that atomically increments a shared variable
x. Its two clients, g() and h(), invoke f() in an empty environment and an
environment that may increase x, respectively. Call this latter environment Rx+.
The guarantee Gx+ additionally dictates that no variable other than x changes.

Definition 2. f() def= x++
g() def= assume(x=3) ; f() ; assert(x=4)
h() def= assume(x=5) ; (f() ll f()) ; assert(x≥6)
Rx+

def= {(σ, σ′) | σ(x) ≤ σ′(x)}
Gx+

def= {(σ, σ′) | σ(x) ≤ σ′(x) ∧ ∀v 6= x. σ(v) = σ′(v)}
Now, the proofs of g() and h() hinge, respectively, upon deriving the following
two specifications for f():

∅, Gx+ ` {x=X} f() {x=X+1} Rx+, Gx+ ` {x≥X} f() {x≥X+1}

4

Both hold, yet no single ‘most general’ specification can derive them both. The
first has the stronger postcondition but the smaller rely; the second is vice versa.
This troublesome tradeoff can be blamed on stability: the larger the rely, the
tougher the stability requirement, and thus, the weaker the postcondition.

In Sect. 4, we shall present a single specification for f() from which both of
the above can be derived. Parameterised on an arbitrary rely R, it simply states
that the postcondition needs weakening from x=X+1 just enough to become
stable under R. Upon instantiating R to Rx+, to verify h(), the postcondition
becomes x≥X+1. And when R is ∅, for g()’s proof, no weakening is required.

3 Explicit Stabilisation

This section describes our formalisation of stability and applies it to the RG proof
rules. The remaining sections develop two alternate proof systems: one (Sect. 4)
that can specify libraries independently of clients, and another (Sects. 5 and 6)
that lets a module hide from clients its internal interference.

We propose two new syntactic constructs: bpcR for the weakest assertion that
is stronger than p and stable under R, and dpeR for the strongest assertion that
is weaker than p and stable under R. That is, bpcR =

∨{q | q ⇒ p ∧ q stab R}
and dpeR =

∧{q | q ⇐ p ∧ q stabR}.

Definition 3 (Semantics of bpcR and dpeR). The required properties are re-
alised uniquely by the following constructions:

σ |= bpcR
def⇐⇒ ∀σ′. (σ, σ′) ∈ R∗ =⇒ σ′ |= p

σ |= dpeR
def⇐⇒ ∃σ′. (σ′, σ) ∈ R∗ ∧ σ′ |= p.

�p�R�p�R p

Fig. 2

Figure 2 presents the intuition behind our new
operators. The nodes represent states; those that
are filled satisfy some assertion p. The edges de-
pict transitions of an arbitrary rely R. The states
in bpcR are those from which any reachable state
satisfies p. The states in dpeR are those reachable
from a state in p.

Our operators can also be defined using Dijkstra’s predicate transformer
semantics [6]: bpcR is the weakest precondition of R∗ given postcondition p,
while dpeR is the strongest postcondition of R∗ given precondition p.

Example. We stabilise x=0 and x6=0 under Rx+ (see Definition 2) like so:

bx=0cRx+
⇔ false dx=0eRx+

⇔ x≥0 bx6=0cRx+
⇔ x>0 dx6=0eRx+

⇔ true

3.1 Properties of explicit stabilisation

Both b c and d e are monotonic with respect to ⇒. They are related via the
equivalence b¬pcR ⇔ ¬dpeR−1 . Each has no effect on an already-stable operand,

5

or when R is empty. Both true and false are stable, and conjunction and disjunc-
tion both preserve stability. The distributivity properties of b c and d e over ∧
and ∨ are analogous to those of ∀ and ∃ respectively:

bp ∧ qcR ⇔ bpcR ∧ bqcR bp ∨ qcR ⇐ bpcR ∨ bqcR
dp ∧ qeR ⇒ dpeR ∧ dqeR dp ∨ qeR ⇔ dpeR ∨ dqeR

Several properties mirror those of the floor and ceiling functions in arithmetic,
from which our syntax is borrowed. If R ⊆ R′, we have:

bbpcRcR′ ⇔ bbpcR′cR ⇔ dbpcR′eR ⇔ bpcR′
ddpeReR′ ⇔ ddpeR′eR ⇔ bdpeR′cR ⇔ dpeR′

Finally, the following property reminds us of the trade-off mentioned in Sect. 2.1:
that as the rely becomes more permissive, stability becomes harder to show:

R ⊆ R′ implies bpcR ⇐ bpcR′ and dpeR ⇒ dpeR′

3.2 Application to RG proof rules

Basic-S
` {p} c {q} ↼p ∩ c ⊆ G
R,G ` {bpcR} c {dqeR}

Skip-S

R,G ` {p} skip {dpeR}

Fig. 3: New RG proof rules
(with stabilised assertions)

We now describe how the RG proof rules (Fig. 1)
can be adapted to use explicit stabilisation rather
than side-conditions.

Figure 3 displays the replacements for the Ba-
sic and Skip rules; the others remain unchanged.
The Basic-S rule first derives p and q by consid-
ering c sequentially; that is, without concern for
stability. A concurrent specification is obtained by
strengthening p and weakening q until they are
both stable. The Skip-S axiom is justified by con-
sidering the execution of skip from an initial state satisfying p. This state also
satisfies dpeR, and the final state must too, since skip does nothing. The follow-
ing backward-reasoning alternative is interderivable: R,G ` {bpcR} skip {p}.

The new rules are at least as powerful as the originals, which can be obtained
by restoring the stability checks and then removing the redundant stabilisations.

3.3 Aside: Simplification of complex RG proof rules

We now highlight the elegance of explicit stabilisation by showing how it can
simplify and generalise complex RG proof rules that rely subtly upon stability.

Coleman [5] proposes the following rule for reasoning about one-armed con-
ditional statements whose test conditions are evaluated non-atomically in the
presence of interference.

StableExpr(es, R) R,G ` {p ∧ es}C {q} SingleUnstableVar(eu, R)
∀σ, σ′. σ |= p ∧ (σ, σ′) ∈ R∗ ∧ σ′ |= ¬(es ∧ eu) =⇒ σ′ |= q {¬eu, p, q} stabR

R,G ` {p} if eu ∧ es then C {q}

6

Tests are pure, and comprise an unstable conjunct eu and a ‘stable’ conjunct es

that contains no variables that R can change (first premise). Crucially, only es

can be assumed still to hold by C (second premise). By requiring eu to involve
only a single read of an unstable variable (third premise), we can treat it as a
predicate of a single state – the state in which the read occurs – despite not
knowing which state that is. Should the test fail, the postcondition must be met
without evaluating C (fourth premise). That premise requires R to preserve the
falsity of eu (fifth premise) so as to ensure that the obligation to fulfil q cannot
be bypassed by having the test evaluate to false but later become logically true.

Now consider the following alternative rule, which uses explicit stabilisation.

SingleUnstableVar(e,R) {p, q} stabR
R,G ` {p ∧ deeR}C1 {q}
R,G ` {p ∧ d¬eeR}C2 {q}

R,G ` {p} if e then C1 else C2 {q}

Essentially, the execution of C1 begins in a state that is reachable (by a sequence
of environment actions) from one in which e evaluated to true. Similarly, d¬eeR
describes a state reached from one where e did not hold. Stability checks on p
and q remain only for compatibility with the rest of Coleman’s system.

Thanks to explicit stabilisation, the new rule has fewer and simpler premises,
plus it extends naturally to two-armed conditionals. Moreover, e need not be split
into stable and unstable conjuncts, for our rule handles arbitrary test conditions.

4 Verifying concurrent library code

Equipped with a notation for stabilising assertions, we revisit the challenge we
set in Sect. 2.1: to verify concurrent library code using RG reasoning.

Recall our library function f() and its clients g() and h() from Defini-
tion 2. Using explicit stabilisation, we can derive the following specification,
which is parametric in R (although its instantiation will be restricted, as de-
scribed shortly).

R,Gx+ ` {dx=XeR} f() {dx=X+1eR}
Observe that instantiating R to ∅ yields a specification suitable for proving g(),
while h() can be proved having set R to Rx+. We now present a proof system
for such ‘parametric specifications’ and formally derive the above one for f().

In a parametric specification, the rely is replaced by a set of relies R, and
the pre and postconditions (denoted p, q, r) become functions from relies to
assertions. We shall use λ-calculus notation to describe such functions.

Definition 4. R, G |=P {p}C {q} def⇐⇒ ∀R ∈ R. R,G |= {p(R)}C {q(R)}.

As the definition above shows, a parametric specification represents a family of
specifications, one for each rely in R. A selection of proof rules for parametric
specifications are presented in Fig. 4; those not depicted are lifted in the obvious
way. (See [21] for the full set.)

7

P-Weaken
R′, G′ `P {p′}C {q′}
p⇒R p′ q′ ⇒R q
R ⊆ R′ G′ ⊆ G
R, G `P {p}C {q}

P-Par
R ∪G2, G1 `P {p1}C1 {q1}
R ∪G1, G2 `P {p2}C2 {q2}

R, G1 ∪G2 `P {p1 G2 llG1 p2}C1 llC2 {q1 G2 llG1 q2}

P-Basic
` {p} c {q} ↼p ∩ c ⊆ G

U, G `P {λR. bpcR} c {λR. dqeR}

P-Skip

U, G `P {λ_. p} skip {λR. dpeR}

Abbreviations:
p1 ⇒R p2

def
= ∀R ∈ R.p1(R)⇒ p2(R) R ∪R def

= {R′ ∪R | R′ ∈ R}
p1 R1 llR2 p2

def
= λR.p1(R ∪R1) ∧ p2(R ∪R2) U def

= universal set of all relies

Fig. 4: Selected proof rules for parametric specifications

` {p} x++ {p[x−1/x]}
Floyd’s Assignment Axiom

` {dx=XeR} x++ {dx=XeR [x−1/x]}
Instantiate p to dx=XeR

U, Gx+ `P {λR. dx=XeR} x++ {λR.
˚
dx=XeR [x−1/x]

Ř
}

P-Basic

comm(x++), Gx+ `P {λR. dx=XeR} x++ {λR. dx=X+1eR}
P-Weaken

Fig. 5: Derivation of parametric specification for f()

The P-Par rule has grown considerably more complex. The reason is that at
the fork and join of parallel commands, the rely changes. If the rely is R initially,
then within the component commands the rely becomes either R∪G2 or R∪G1,
and after joining, it reverts to R. Our rule simply reflects this progression.

The P-Basic and P-Skip rules both deduce specifications that feature the
universal set of relies, which enables their use in any environment. The P-
Weaken rule can then be used to shrink this set, typically removing the bigger
relies. Doing so restricts a specification’s reusability, but it enhances the appli-
cability of the ⇒R relation that allows it to be simplified.

Theorem 5. The proof rules of parametric stability are sound, that is:

R, G `P {p}C {q} =⇒ R, G |=P {p}C {q}
and they encode the proof rules of Fig. 1 (in which assertions do not contain
explicit stabilisation), both completely and soundly, that is:

R,G ` {p}C {q} =⇒ P(R), G `P {λ_. p}C {λ_. q}
R,G |= {p}C {q} ⇐= P(R), G |=P {λ_. p}C {λ_. q}

Here, the use of powersets lets the P-Weaken rule emulate the Weaken rule.

Figure 5 shows the derivation of our specification for f(). In applying the
P-Basic rule, we utilised the identity bdx=XeRcR ⇔ dx=XeR. The specification

8

comm(x++), Gx+ `P {λR. dx=XeR} x++ {λR.
˚
dx=XeR [x−1/x]

Ř
}

Set R to ∅↙ ↘Set R to Rx+

∅, Gx+ ` {x=X} f() {x=X+1} Rx+, Gx+ ` {x≥X} f() {x≥X+1}

Fig. 6: Instantiating the specification

on the third line is the most general, as it allows the rely to be instantiated freely.
Yet we do not stop there. We restrict the rely to the set comm(x++) of those that
‘commute’ with the x++ operation; that is, for which dpeR [x−1/x]⇔ dp[x−1/x]eR
holds for all p. Using this property we can simplify the postcondition.

Figure 6 shows informally how the parametric specification can then be in-
stantiated to two ordinary specifications, for use in proving the two clients g()
and h(). Really, this ‘instantiation’ is an application of the P-Weaken rule to
restrict R to the singletons {∅} and {Rx+} respectively.2

In conclusion, we find that the ‘most general’ specifications that our para-
metric scheme can deduce are, though sometimes desirable, inhibited by their
complexity. The specification on the third line of Fig. 5 contains two stabilisation
operations in its postcondition – and this is for just a single basic command. A
sequence of n basic commands, specified in a similar way, may contain up to
n + 1 stabilisation operations in the postcondition (modelling the environmen-
tal interference before, between and after the commands). The complexity of the
specification is thus comparable to the implementation it describes. Accordingly,
it is crucial that our scheme allows specifications to be specialised to restricted
sets of relies, and thence, simplified.

5 Explicit Stabilisation for RGSep

We now bring explicit stabilisation to RGSep [20], an RG-style logic that reasons
about concurrent heap-manipulating programs by splitting the heap into shared
and thread-local parts. The development in this section builds upon our appli-
cation of explicit stabilisation to RG (Sect. 3), but we shall now leave behind
the parametric specifications of Sect. 4.

Though designed for concurrency, we show (Sect. 5.3) how RGSep can be
applied to sequential modules by reinterpreting the ‘shared’ heap as that part
owned by the module (its so-called ‘internal heap’). Our extension of RGSep with
explicit stabilisation enables an InfoHiding proof rule, by which a module can
hide from clients the interference that affects its internal heap. We demonstrate
our approach in Sect. 6, by verifying the Version 7 Unix memory manager.

2 Interestingly, although the relies ∅ and Rx+ are both in comm(x++), the same is not
true of all those in P(Rx+): for instance, the rely that only increments x from 1 to 2.

9

P ::= e
k7→e | emp | e = e | e > e | true | ¬P | P ⇒ P | P ∗ P | ∃x. P | bP cR | dP eR

where k ∈ (0, 1] and e is a pure expression
h, i |=SL e0

k7→e1
def⇐⇒ h = {Je0Ki

k7→Je1Ki}
h, i |=SL emp

def⇐⇒ h = ∅
h, i |=SL P0 ∗ P1

def⇐⇒ ∃h0, h1. h0⊥h1 ∧ h = h0]h1 ∧ h0, i |=SL P0 ∧ h1, i |=SL P1

h, i |=SL bP cR
def⇐⇒ ∀h′. (h, h′) ∈ R∗ =⇒ h′, i |=SL P

h, i |=SL dP eR
def⇐⇒ ∃h′. (h′, h) ∈ R∗ ∧ h′, i |=SL P

where h⊥h′ means dom(h) and dom(h′) are disjoint.

Fig. 7: Syntax and (selected) semantics of separation logic assertions

p ::= P | P | p ∗ p | p ∧ p | p ∨ p | ∃x. p | ∀x. p | bpcR | dpeR
l, s, i |= P

def⇐⇒ l, i |=SL P

l, s, i |= P
def⇐⇒ l = ∅ ∧ s, i |=SL P

l, s, i |= p0 ∗ p1
def⇐⇒ ∃s0, s1. s0⊥s1 ∧ s = s0]s1 ∧ l, s0, i |= p0 ∧ l, s1, i |= p1

l, s, i |= bpcR
def⇐⇒ ∀s′. (s, s′) ∈ (R\l)∗ =⇒ l, s′, i |= p

l, s, i |= dpeR
def⇐⇒ ∃s′. (s′, s) ∈ (R\l)∗ ∧ l, s′, i |= p

Fig. 8: Syntax and (selected) semantics of RGSep assertions

5.1 Introduction to RGSep

RGSep extends ordinary RG reasoning with conceptual divisions of the heap
into thread-local and shared parts. The rely and guarantee need specify only
changes to the shared part, and thus become far more compact.

RGSep inherits its ability to reason naturally about heap-manipulating pro-
grams from separation logic [13, 18], the assertion language of which is presented
in Fig. 7. States comprise a heap hmapping locations to values and a store imap-
ping variables to values. The ∗ operator attempts to split the heap using the]
operator, such that the two (disjoint) parts respectively satisfy its two operands.
We use the fractional permissions model [3], in which a heap may describe some
locations only partially. For instance, the assertion x 17→3 describes a heap com-
prising a single location x with value 3, and confers full (write) permission on
that location. It may be split into several read-only permissions (e.g. x .57→3∗x .57→3)
which may be shared between different threads. Threads communicate only via
the heap, so the stabilisation operators can ignore the store.

Figure 8 presents the assertion language of RGSep, augmented with explicit
stabilisation. The heap is split into disjoint local and shared regions, l and s,
which are described by unboxed and boxed assertions respectively. The ∗ op-
erator now splits only the local heap. The shared heap is never split, in order
that all threads share the same view of it. For instance, if one thread’s view of
the overall state is described by Ps ∗ Pl, and another’s by Qs ∗Ql, then the ∗
operator combines them thus: Ps ∧Qs ∗ Pl ∗Ql.

10

Definition 6 (RGSep actions). The action P Q, defined {(s]s0, s′]s0) |
∃i. s, i |=SL P ∧ s′, i |=SL Q}, replaces a part of the shared heap satisfying P
with one satisfying Q.

Definition 7 (Contextual actions). The contextual action P Q | F , de-
fined {(s]sF]s0, s′]sF]s0) | ∃i. s, i |=SL P ∧ s′, i |=SL Q ∧ sF , i |=SL F},
requires a separate (unaffected) part of the heap that satisfies F to catalyse it.

5.2 RGSep and stabilisation

Our semantics of bpcR and dpeR (Fig. 8) imposes the following restriction on R:

Definition 8 (Restricting the rely). R\l def= {(s, s′) ∈ R | l⊥s ∧ l⊥s′}
The R\l operation removes from R impossible environmental actions that would
make the shared heap overlap the current thread’s local heap l.3

All of the properties detailed in Sect. 3.1 continue to hold. The following
series of lemmas describe some additional RGSep-specific properties. Lemma 9
asserts that local assertions are vacuously stable.

Lemma 9 (Local assertions). bP cR ⇔ dP eR ⇔ P .

The next lemma says that we need not restrict the rely when stabilising a
shared assertion. Such assertions imply that the local heap is empty (see Fig. 8),
and thus unable to conflict with the shared heap.

Lemma 10 (Shared assertions).
⌊
P
⌋
R
⇔ bP cR and

⌈
P
⌉
R
⇔ dP eR .

Finally, we describe the distributivity of the stabilisation operators over ∗.
Lemma 11 (Separately-conjoined assertions). bpcR∗bqcR ⇒ bp ∗ qcR and
dp ∗ qeR ⇒ dpeR ∗ dqeR.

Remark. Neither converse implication holds. Obtain a counterexample for the
first from p as t7→0 ∗ x 7→0 ∨ t7→1 ∗ y7→0, q the same but with x and y
swapped, and R as the single action t7→0 t 7→1. For the second, take p as
∃n. t7→n ∧ n < 0 , q as ∃n. t7→n ∧ n > 0 , and R able to increase t’s value.

Frame-S
R,G ` {p}C {q}

fv(r) ∩mods(C) = ∅
R,G ` {p ∗ r}C {q ∗ dreR∪G}

Fig. 9: New frame rule

The proof rules of RGSep can be adapted to
use explicit stabilisation. Figure 9 shows the re-
placement for RGSep’s frame rule (see [21] for the
complete set of new rules). The original rule re-
quired the frame r (which must not mention any
local variables modified by C) to be stable under
both R and G in case any shared heap it specifies
is mutated by either the environment or C itself. In the new rule, this check
becomes an explicit stabilisation on r in the postcondition. As in the Skip-S
rule (Fig. 3), the stabilisation could equally be done in the precondition instead.
3 This approach slightly refines the presentation of stability in [19, Lem. 15], which
did not consider such conflicts between shared and local heaps.

11

5.3 RGSep and sequential modules

This discussion lays the groundwork for the verification of a memory manager
presented in Sect. 6. We shall assume a module comprises some state, including
several heap locations, plus a collection of public routines that can manipulate
this so-called ‘internal heap’. A sequential module is one designed for single-
threaded machines: its routines and all of its clients are sequential.

Sequential modules are analogous to the concurrent programs that RGSep
was designed to verify. The RG method, of abstracting a command’s environment
by a rely, applies to both, albeit for different reasons. For concurrent programs,
we must abstract the concurrently-running threads in order to avoid the com-
binatorial explosion that results from considering each possible interleaving of
commands individually. For sequential modules, we must abstract clients’ actions
between module calls because we cannot know what clients will do. To verify
sequential modules, we redeploy RGSep’s ‘shared’ and ‘thread-local’ heaps to
model the module’s internal heap and, respectively, the heaps of its clients.

Consider a module M with several routines. A client first calls init(), which
prepares part of M ’s state for this client, and may transfer ownership of some of
M ’s heap cells. The return value x identifies subsequent calls in this sequence.
The client then invokes some other routines of M – passing x as a parameter
each time – before calling finalise(x) so that its parts of M ’s state can later
be used for another client. We use ‘client’ here to refer to a sequence of calls
parameterised on the same x.

The crux is to show that several interleaved clients can all interact with
M safely. For instance: if one client executes x := init(), then another executes
y := init() followed by a sequence of calls parameterised on y, can the first client
be sure thatM is still in a state of readiness for a sequence of calls parameterised
on x, and that the intervening events have not affected its part of M ’s state?

This is actually a matter of stability: we are seeking to prove that the post-
condition of x := init() is stable under an environment that can execute M ’s
routines arbitrarily (excepting those parameterised on x). We need only con-
sider an environment that calls M ’s routines: other activities do not affect M ’s
internal state, so can be deemed local.

To define such an environment, we require x := init() to return a token(x)
predicate, to reside in the client’s local heap. The predicate is abstract [16],
which means that its definition is out of scope. Later module calls by this client
(which we name Cx) shall require the token’s presence in its local heap, and the
finalise(x) call shall confiscate it. The postcondition of x := init() is thus of
the form P (x) ∗ token(x), where P (x) describes an internal heap with a part
initialised for Cx. Let G be the set of RGSep actions by which M ’s routines can
mutate its internal heap. Alone, P (x) is not stable under G, for G includes
actions that mutate Cx’s part of the internal heap. Yet it becomes stable when
combined with the local assertion token(x). Why? Because the presence of the
token(x) in Cx’s local state prohibits any other client having it and thus being
able to continue the sequence of calls parameterised on x. It is vital that our
refined notion of stability considers such conflicts between local and shared heaps

12

(Definition 8). Since stability occupies such a central role here, perhaps explicit
stabilisation can be usefully applied? It can, in the following two ways.

Clarifying the stable parts of assertions. We have claimed P (x) ∗token(x)
to be a suitable – and stable – postcondition for init. Using explicit stabilisation,
we now propose

⌊
P (x) ∗ token(x)

⌋
G

instead. Strengthening the postcondition
in this way is sound here, because the stabilisation has no effect on the already-
stable assertion. Thus, the presence of b c operators in the postcondition (and,
dually, d e in the precondition) serves to assert that their operands are stable.
(In fact, p ⇔ bpcR exactly characterises those assertions that are stable under
R.) We arrive at the following prototype specification:

G `
{⌈

P
⌉
G

}
x := init()

{⌊
P (x) ∗ token(x)

⌋
G
∗Q
}
.

We omit here and henceforth the rely from specifications, there being only one
thread. We retain the guarantee, whose abstraction of the module calls that
the thread may make is utilised by the Frame-S rule. The unparameterised
P describes any valid internal heap of the module. See how the assertion Q,
which describes cells that are transferred into the client’s local heap, can be
added outside the stabilised part: a client can mutate this part of the heap
without concern for stability, the changes being purely local (see Lem. 9). Not all
local changes can be treated so flippantly – indeed, the local assertion token(x)
is crucial to stability – but by delimiting the important assertions with the
stabilisation syntax, we certify exactly which bits can and cannot be touched.
Clients who obey this can be free of stability considerations, and instead rely on
general properties of stabilisation, such as those detailed in Sect. 3.1.

Information hiding. Because the clients need not perform stabilisation, they
need not even know the set of actions under which the assertions must be stable.
That is, the definition of G can be kept internal to the module. This observation
inspires the following proof rule.

InfoHiding

Module:
(
∆,G `

{
pi

}
〈Ci〉

{
qi
})n

i=0

Client: ∆′ ⊆ ∆ ∆′,
(
G `

{
pi

}
fi

{
qi
})n

i=0
, G ` {p}C {q}

Whole system: ` {p} let (fi=Ci)
n
i=0 in C {q}

The rule concerns a sequential module comprising routines f1 to fn with imple-
mentations C1 to Cn. The first line specifies each routine, in which G is the set
of actions that clients of the module can perform. (In order to be able to access
the module’s internal heap, RGSep requires Ci to appear in angled brackets.)
∆ denotes a set of predicate definitions, including the definition of token for
instance. It also includes the definition of G, which we shall treat as an abstract
predicate too. The second line specifies a client of the module, C. The ∆′ it
uses excludes the definitions of any predicates that are to remain abstract, and
crucially, omits G’s definition. Doing so makes the specification more reusable

13

– even in the event that G changes – and hence more conducive to modular
reasoning. Explicit stabilisation is vital here: the stabilisation operations in the
pi’s and qi’s refer to a particular G in the module specifications, and an arbitrary
G in the client specification.

Theorem 12. The InfoHiding rule is sound.

Proof. The only departure from a typical rule for let commands is to remove
G’s definition from the client’s specification, which logically strengthens one of
the rule’s assumptions.

6 Case study: Verification of a memory manager

We now reify the concepts of Sect. 5 by verifying the Version 7 Unix memory
manager. This illustrates both our extension of explicit stabilisation to RGSep,
and the use of the InfoHiding rule to hide a sequential module’s internal inter-
ference from its clients. The verification itself is not only believed to be the first
for this program; it also reveals a latent bug. The proof is one of safety: we prove
neither termination nor that blocks are allocated in any particular fashion.

To begin, consider the following natural specifications, from [16], for malloc
and free. Assume malloc cannot fail, and suppose a word is WORD bytes long.{

emp
}

x := malloc(n× WORD)
{
token(x, n) ∗ x 7→_ ∗ · · · ∗ x+n−17→_

}{
∃n. token(x, n) ∗ x7→_ ∗ · · · ∗ x+n−17→_

}
free(x)

{
emp

}
The malloc routine gives each client an abstract token predicate, which the client
later uses to certify to free that the block being returned was truly allocated
by malloc (free’s behaviour being undefined otherwise). These specifications
could be realised naïvely by implementing token(x, n) as x−17→n; that is, by
storing the length of each block in the preceding cell.

Real memory managers are far more complex. The one we shall examine
forms the cells that precede each block into a monotonically-increasing chain of
pointers, linking all the allocated and free blocks. Such a manager must maintain
in its internal heap the pointer chain, plus any free blocks, while the allocated
blocks are conceptually held by each respective client. For a token, we can now
afford only half of the cell preceding the block, because the manager must retain
at least read-permission on this cell for later traversals of the pointer chain. Note
that by creating the token from part of the existing datastructure, our proof
avoids the need for auxiliary state.

The crux of the verification is to prove that a block allocated to a client
remains allocated until, and only until, that client frees it; that is, it is not
invalidated by other calls to malloc and free. Defining G as the set of actions
of malloc and free, we are asking if malloc’s postcondition is stable under G.

It is easy to show that it is unaffected when these actions are applied to blocks
other than the current one. And although the environment is allowed to apply
these actions to the current block, it is actually unable to do so. Why? Because

14

G `
˘˚

arena
Ǧ

¯
x := malloc(n× WORD)

¨
arena

G̋
∗ barenatoken(x, n)cG

∗ x7→_ ∗ · · · ∗ x+n−1 7→_

ff
G `

∃n.

˚
arena

Ǧ
∗ darenatoken(x, n)eG

∗ x7→_ ∗ · · · ∗ x+n−1 7→_

ff
free(x)

˘¨
arena

G̋

¯
Fig. 10: Specifications of malloc and free

G `
˘˚

arena
Ǧ

¯
x := malloc(2*WORD);

3
˘¨

arena
G̋
∗ barenatoken(x, 2)cG ∗ x7→_, _

¯
=⇒

˘˚
arena

Ǧ
∗ barenatoken(x, 2)cG ∗ x7→_, _

¯
y := malloc(3*WORD);

6
˘¨

arena
G̋
∗ barenatoken(x, 2)cG ∗ x7→_, _ ∗ barenatoken(y, 3)cG ∗ y7→_, _, _

¯
[y+1] := 7;˘¨
arena

G̋
∗ barenatoken(x, 2)cG ∗ x7→_, _ ∗ barenatoken(y, 3)cG ∗ y7→_, 7, _

¯
9 =⇒

˘˚
arena

Ǧ
∗ darenatoken(x, 2)eG ∗ x7→_, _ ∗ barenatoken(y, 3)cG ∗ y7→_, 7, _

¯
free(x);˘¨
arena

G̋
∗ barenatoken(y, 3)cG ∗ y7→_, 7, _

¯
Fig. 11: Verification of a simple client

the current block cannot be accidentally re-allocated, since to do so would give
the client a duplicate token, which the ∗ operator forbids. And neither can it be
accidentally freed, without yielding its token.

Using explicit stabilisation, here is a first attempt to specify malloc:

G `
{⌈

arena
⌉
G

}
x := malloc(n× WORD)

{⌊
arena(x, n) ∗ token(x, n)

⌋
G

∗ x7→_ ∗ · · · ∗ x+n−1 7→_

}
The arena predicate asserts that the manager’s internal heap is valid, while
arena(x, n) additionally asserts that the block at x is missing. Note that the
stability of arena(x, n) relies on the token(x, n) predicate in the local heap.

This specification exposes too much of the manager’s innards. We address this
in the improved specifications in Fig. 10, by collapsing arena(x, n) ∗ token(x, n)
into a single abstract predicate, arenatoken(x, n). We also append the arena
predicate to both malloc’s postcondition and free’s precondition. Strictly, this
is redundant, for arena is entailed by arenatoken, but having malloc’s postcon-
dition reestablish its precondition simplifies the verification of successive calls to
malloc and allows the predicates to remain fully abstract.

Now consider the simple client in Fig. 11. Because the content of the block
lies outside the scope of the stabilisation, the client can mutate it (line 7) without
having to reconsider stability. The allocation of the block at y (line 5) does not
affect the block at x: such a deduction is enabled by the Frame-S rule of Fig. 9.
(Although this rule imposes a stabilisation on the entire frame, we can leave this
implicit for the local parts, by Lem. 9.) See how the use of explicit stabilisation

15

allows the client’s verifier to rely only on general properties of stabilisation: for
instance, the deduction of the assertion on line 4 follows straight from bpcR ⇒
p⇒ dpeR. The definition of G is thus not needed by the client, so we can use our
InfoHiding rule to keep it internal to the module.

The rest of this section concerns the implementation (Sect. 6.1) and verifica-
tion (Sect. 6.2) of the memory manager. The source code is provided in Appx. A;
our full proof is in [21]. We omit an optimisation that tells malloc where to begin
its search, because it contains a bug, which we explain in Sect. 6.3. Section 6.4
describes some peripheral details of the implementation and the verification.

6.1 Implementation of the memory manager

Lorem ipsum dolor sit
a m e t , c o n s e c t e t u r
adipiscing elit. Integer
eget risus luctus arcu
gravida elementum. Ut
ma lesuada rhoncus
quam ut accumsan. Sed
eu dui dolor, in eleifend
ipsum. Suspendisse
interdum sem a magna
e u i s m o d i n a l i q u e t
s a p i e n f e r m e n t u m .
Integer ac porta nulla.
Vestibulum at felis tellus.
Maecenas est lorem,
accumsan quis eleifend
vitae, egestas non quam.
A l i q u a m u t n e q u e
t i n c i d u n t n u n c
vestibulum sagittis ac sit
amet dolor. Phasellus
n e c a u g u e e t e s t
vestibulum mattis eu non
purus. Sed quis massa
quis enim condimentum
porttitor nec quis lorem.
Fusce volutpat metus
ullamcorper felis eleifend
quis viverra ante congue.
Morbi congue elit nisl.
Nunc sagittis molestie
arcu, a cursus lorem
vu lpu ta te s i t ame t .
Aliquam erat volutpat. Ut
adipiscing sollicitudin
convallis.

M o r b i l o r e m u r n a , p l a c e r a t
pellentesque imperdiet vestibulum,
fermentum sit amet felis. Praesent
aliquet convallis libero quis placerat.
Nam quis justo vitae quam laoreet
iaculis. Curabitur quis mauris lectus,
a vestibulum ligula. Suspendisse
nibh mi, luctus ac luctus ac, ultrices
tincidunt velit. Praesent suscipit urna
et mi mattis aliquet. Pellentesque
vitae tortor malesuada lectus
bibendum dictum id sit amet urna.
Phasellus egestas lobortis nulla vel
pulvinar. Suspendisse euismod
luctus diam, in cursus orci pretium
eget. Cras porttitor leo id enim
vo lu tpa t non susc ip i t massa
condimentum. Cras accumsan
ullamcorper augue, eu fringilla
neque pulvinar quis. Sed blandit
augue vel purus mollis sollicitudin.

s t

Fig. 12: An arena

The memory manager controls the allocation and
deallocation of blocks of main memory to and
from client processes. The portion of memory it
controls (shown in Fig. 12) contains both free
and allocated blocks. The grey cells form a cyclic
chain of pointers and the white blocks in between
can be allocated to clients. Since blocks are word-
aligned, the least significant bit in each pointer is redundant, and is hence em-
ployed to signal the availability of the following block. In the figure, black and
white squares indicate that this so-called ‘busy’ bit is set and, respectively, un-
set. The module-level variables s and t respectively identify the first and last
pointers in the arena. Because it is not followed by an allocatable block, the last
pointer’s busy bit is permanently set.

A client requests a block of n bytes by calling malloc(n). For clarity of
exposition we shall keep n a multiple of the word size, WORD. The routine traverses
pointers until it finds a free block that is sufficiently large, returning the null
pointer in the case of failure. It coalesces consecutive free blocks throughout
the search. Should the block it finds be exactly the right size, a pointer to it is
returned, and should it be too large, it is divided into two and a pointer to the
first is returned. The client can later invoke free(x), x being the address of the
first cell in the block. Observe that free is not parameterised by the length of
the block, because the length was recorded when malloc allocated it.

6.2 Details of the verification

Figure 13 defines some auxiliary predicates used in the specifications and proof.
x→u y describes an unallocated block between x and y. Upon being allocated a
block of size n with first cell x, the client is also given token(x, n), which contains
a half permission on the block’s pointer; the manager retains the other half. We
write x 7→ybusy to mean that upon unsetting x’s busy bit, it would contain the
address of y. xxy says that y is the special pointer at the end of the arena
that points back to x, the start of the arena. x�y denotes a possibly-empty
monotonically-increasing chain of pointers from x to y (including any unallocated
blocks), the definition of which abbreviates x→x′ ∗ x′�y to x→x′�y.

16

x→u y
def
= x<y ∧ x7→y ∗ (x+1)7→_ ∗ · · · ∗ (y−1)7→_

x→a y
def
= x<y ∧ x .57→ybusy

x→y def
= x→u y ∨ x→a y

xxy
def
= x<y ∧ y 7→xbusy

x�y
def
= (∃x′. x→x′�y) ∨ (x=y ∧ emp)

arena
def
= s�t ∗ sxt

arena(x, n)
def
= s�(x−1)→a (x+n)�t ∗ sxt

token(x, n)
def
= (x−1)

.57→(x+n)busy

arenatoken(x, n)
def
= arena(x, n) ∗ token(x, n)

Fig. 13: Predicates

Coalesce: a→u b→u c a→u c | s�a
AllocateEntire: a→u b a→a b | s�a
AllocatePart: a→u b a→a (b−n)→u b | s�a
Free: a→a b a→u b | s�a

Fig. 14: Main actions

p

p

px

pxy

malloc(1000*WORD);

x := malloc(1*WORD);

y := malloc(3*WORD);

Fig. 15: The bug

Figure 14 formalises the ways in which the internal
heap of the module may be mutated by clients calling
malloc and free. Only one routine can execute at once,
so it would suffice to list a single action for each. We
prefer to split them into several simple actions. The
first coalesces two consecutive free blocks. The second
allocates an entire block to a client, while the third
allocates just the initial part. The fourth frees a block.
The context s�a ensures that the blocks that are acted
upon are really in the arena. G is the union of all these
actions.

6.3 A (faulty) optimisation

The following bug was discovered during the verifica-
tion process.

The manager maintains a global variable p (named
allocp in the original source code) that, after a block
is allocated, is pointed to the successive block, and af-
ter a block is freed, is pointed to that block. It serves
to identify a good place for the next call to malloc to begin its search. The im-
plementation does not update p if allocation fails, however, and therein lies the
bug: p should be updated in case the block to which it points has been coalesced
with its predecessor, lest it be left pointing inside a block.

Figure 15 demonstrates how this bug could wreak havoc. Our contrived arena
contains just two one-word blocks, both of which are free, and p initially points

17

to the second. The first malloc call fails, but has the side-effect of leaving p
inside the coalesced block. We then allocate a small block at x, before wrapping
around to the start of the arena and allocating a larger block at y, thereby
reaching a situation in which the contents of the smaller block is allocated twice.

The discovery of this bug was prompted by the failure of the invariant s�p,
which states that p identifies a valid pointer in the arena. We have successfully
executed our exploit to confirm that the bug is real.

6.4 Other issues

There are several other issues involved in the implementation and verification of
the memory manager, which we explain now. These issues have been sidestepped
so far in order to focus on the crucial parts of the verification.

Allocation failure. To handle the case where malloc fails, its postcondition
should be disjoined with the following assertion:

⌊
arena

⌋
G
∗ x=0.

Extending the arena. Once the search for a block has exhausted the arena,
malloc invokes sbrk to ask the system for another block of memory. This block
will be located at an address above t because, in Version 7 Unix, memory allo-
cated via sbrk is never returned. The following three actions should be added
to G, to formalise these calls to sbrk:4

ExtendGap: &t7→t ∗ sxt ∗ brk(b) ∧ b>t+1 &t 7→t′ ∗ t→a b→u t′ ∗ sxt′ ∗ brk(t′+1)

ExtendNoGap: &t7→t ∗ sxt ∗ brk(t+1) &t 7→t′ ∗ t→u (t+1)→u t′ ∗ sxt′ ∗ brk(t′+1)

AdvBreak: brk(b) ∃n>0. brk(b+n)

The first extends the arena with a new block, leaving a gap that is filled with
an unfreeable dummy block to maintain the illusion of a contiguous arena. The
second is similar, but without the gap. The third action, which advances the
‘break value’ (the cell at which the next successful call to sbrk will return a
block), is kept distinct to reflect that it may be performed in other situations.

An issue with dummy blocks. When the arena is extended via the ExtendGap
action, the resulting gap is filled with a dummy block that is permanently allo-
cated. In order to allocate such a block, we need to hand the caller the token
predicate, yet there is no client in this situation. We thus add a true predicate
to the arena, which can ‘soak up’ these spare tokens. Considering this and the
previous points, the arena (see Fig. 13) can be more precisely defined as follows:

arena def= ∃s, t, b. true ∗ &s 7→s ∗ &t7→t ∗ s�t ∗ sxt ∗ brk(b) ∧ t < b

7 Related Work

Explicit stabilisation arose out of ‘mid stability’ [19, §4.1], a variation of RG
reasoning that places stability checks not on the pre and postconditions of basic
4 We are now treating module-level variables more carefully: the variable t is modelled
as a heap cell at address &t, thus allowing its value to be altered by these actions.

18

commands, but at the points of sequential and parallel composition instead. This
more strategic placement eliminates redundant checks, and also allows libraries
comprising just one basic command to be verified without considering stability.
Our parametric proof system (Fig. 4) extends this to all library functions (and
encodes mid stability soundly and completely).

RG-style reasoning has been used before to verify concurrent library code
(e.g. [10]). The specifications of that approach involve a particular rely, whereas
our parametric specifications do not require a particular rely to be instantiated.

RG has also furnished proofs of sequential modules before (e.g. [22]), but we
believe ours to be the first that hides the module’s internal interference. The
InfoHiding rule that enables this feat is related to the hypothetical frame rule
[15]: the latter rule hides the module’s state from the client, while ours hides
the module’s interference. Perhaps the hypothetical frame rule could be used to
remove the arena predicate from the verification given in Fig. 11, thus revealing
to the client neither the module’s state nor its internal interference.

SAGL [9], like RGSep, is a descendant of RG and separation logic, to which
explicit stabilisation could also be applied. Local Rely-Guarantee (LRG) [8] is
a third descendant that addresses an inherent flaw in the modularity of its sib-
lings: that the shared heap must be globally known. It defines a ∗ operator over
interference, which allows the shared heap to be split into portions that are
shared between just a few threads. The application of explicit stabilisation to
LRG could simplify the verification of clients that invoke multiple modules, for
our approach currently handles only one.

Explicit stabilisation can be seen as a bridge between theory and implemen-
tation: tools, such as SmallfootRG [4], that automate RG-style reasoning may
defer stability checks rather than perform them at the point of rule application,
and explicit stabilisation can help to formalise this ‘lazy’ approach. We have not
considered the implementation of stabilisation; this issue is explored in [2].

8 Conclusion

We have proposed explicit stabilisation as a new way to deal with stability in
RG reasoning. The central idea is to record information about an assertion’s
stability into its syntactic form. The main benefits are in modular reasoning:

Library code can be verified independently of clients. In Sect. 4, we showed how
an approach based upon explicit stabilisation enables RG reasoning to verify
concurrent library code. Essentially, the stabilisation in the library’s specification
is evaluated so lazily that it actually becomes an obligation of the client.

Client code can be verified independently of a sequential module. We showed in
Sect. 5 how the application of explicit stabilisation to RGSep gives rise to an
InfoHiding rule that allows a sequential module to hide its internal interference
from its clients. Such information hiding is crucial for modular reasoning, because
it allows the specification of a client to be reused, even despite changes to the
specification of this internal interference. Section 6 demonstrated this reasoning
by verifying a memory manager.

19

It would be interesting to investigate whether these two forms of modularity can
be combined; that is, can we verify both a library and its clients, modularly,
at the same time? It looks feasible. The specification for the library in Sect. 4
used explicit stabilisation with an arbitrary rely R, which became specific for
each client in turn. Meanwhile, the specifications for the memory manager in
Sect. 6 used explicit stabilisation with the specific G of the module, which was
then generalised to an arbitrary G for the clients, so as to provide information
hiding. Perhaps a combination of these approaches would parameterise on both
the rely and the guarantee?

We also plan to apply explicit stabilisation to more advanced logics based
on RG, such as LRG, Deny-Guarantee [7], and the logic of Gotsman et al. for
proving liveness [11]. The notions of stability in such logics are becoming ever
more demanding, so it is increasingly important to have a solid basis upon which
to reason about stability. We believe explicit stabilisation provides such a basis.

Acknowledgements

The idea of parameterising RG specifications on the ‘current rely’ is due to
Hongseok Yang. Richard Bornat introduced us to the malloc example. We also
thank Joey Coleman, Xinyu Feng, Erica Fulbrook, Cliff Jones, Alexander Malkis,
Tom Ridge and Viktor Vafeiadis for feedback and helpful discussions. This work
was supported by EPSRC grant F019394/1. Parkinson is supported by a Royal
Academy of Engineering/EPSRC fellowship.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In
POPL, 1990.

2. H. Amjad and R. Bornat. Towards automatic stability analysis for rely-guarantee
proofs. In VMCAI, 2009.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, 2005.

4. C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular safety checking for fine-
grained concurrency. In SAS, 2007.

5. J. W. Coleman. Expression decomposition in a Rely/Guarantee context. In
VSTTE, 2008.

6. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., 1976.
7. M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-Guarantee reasoning.

In ESOP, 2009.
8. X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
9. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-

ration logic and assume-guarantee reasoning. In ESOP, 2007.
10. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of

multithreaded programs. Theor. Comput. Sci., 338(1-3), 2005.
11. A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis. Proving that non-blocking

algorithms don’t block. In POPL, 2009.

20

12. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10), 1969.

13. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, 2001.

14. C. B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, University of Oxford, 1981.

15. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL, 2004.

16. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, 2005.
17. L. Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In ESOP, 2003.
18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, 2002.
19. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University

of Cambridge, 2007.
20. V. Vafeiadis and M. Parkinson. A marriage of Rely/Guarantee and separation

logic. In CONCUR, 2007.
21. J. Wickerson, M. Dodds, and M. Parkinson. Explicit Stabilisation for Modular

Rely-Guarantee Reasoning. Technical report, University of Cambridge, 2010.
22. G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatic assume/guarantee

reasoning for heap-manipulating programs: Ongoing work. In AIOOL, 2005.

A Source code of Unix V7 memory manager

Abridged and corrected. Retrieved from the Unix Heritage Society.5

#define WORD sizeof(st)
#define BLOCK 1024
#define testbusy(p) ((int)(p)&1)
#define setbusy(p) (st *)((int)(p)|1)
#define clearbusy(p) (st *)((int)(p)&~1)
struct store { struct store *ptr; };
typedef struct store st;
static st s[2]; /*initial arena*/
// static struct store *allocp; (bug removed)
static st *t; /*arena top*/
char* sbrk();
char* malloc(unsigned nbytes) {
register st *p, *q;
register nw; static temp;
// omitted: initialisation code
nw = (nbytes+WORD+WORD-1)/WORD;
for(p=s; ;) {
for(temp=0; ;) {
if(!testbusy(p->ptr)) {
while(!testbusy((q=p->ptr)->ptr))
p->ptr = q->ptr;

if(q>=p+nw && p+nw>=p) goto found;
}
q = p; p = clearbusy(p->ptr);

if(p>q) ;
else if(q!=t || p!=s) return 0;
else if(++temp>1) break;

}
temp = ((nw+BLOCK/WORD)

/(BLOCK/WORD))*(BLOCK/WORD);
q = (st *)sbrk(0);
if(q+temp < q) return 0;
q = (st *)sbrk(temp*WORD);
if((int)q == -1) return 0;
t->ptr = q;
if(q!=t+1) t->ptr = setbusy(t->ptr);
t = q->ptr = q+temp-1;
t->ptr = setbusy(s);

}
found:
if(q>p+nw) ((st *)(p+nw))->ptr = p->ptr;
p->ptr = setbusy(p+nw);
return((char *)(p+1));

}
free(register char *ap) {
register st *p = ((st *)ap)-1;
p->ptr = clearbusy(p->ptr);

}

5 http://minnie.tuhs.org/UnixTree/V7/usr/src/libc/gen/malloc.c.html

